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Ames Research Center 
Moffett Field, C a l i f .  

SUMMARY 

The transport  of thermal radiation through an absorbing medium 

bounded by pa ra l l e l  w a l l s  i s  predicted. 

assumed t o  emit, r e f l ec t ,  and transmit the radiation isotropical ly .  

The medium i s  assumed t o  be i n  loca l  thermodynamic equilibrium and t o  

have radiative character is t ics  t ha t  can be averaged over the en t i re  

frequency range. F i r s t ,  re la t ions are  given whereby the solution 

becomes available once the problem associated with the case of opaque, 

black w a l l s  i s  solved. Second, different  methods are employed t o  

derive approximations of radiative f l u x  and temperature d is t r ibu t ion  

through the medium. Simple formulas, of in te res t  i n  engineering design 

and analysis, appear as a by-product of the study. Comparisons are  

made with previously published numerical r e s u l t s .  

The w a l l s  a re  heated and are  

INTRODUCTION 

A'number of references are  now available in which the equations 

characterizing the transport  of thermal radiation through an absorbing 

medium are  formulated and mathematical techniques leading t o  actual  pre- 

dictions are developed. Foremost among these are the t r e a t i s e s  of 



Chandrasekhar [l], Kourganoff [2], and Sobolev [3]. 

re ta ins  considerable algebraic complexity, however, pa r t i a l ly  because 

of the mult ipl ic i ty  of physical parameters affecting the phenomena and 

the nuniber of additional idealizations tha t  are of pract ical  in te res t .  

Thus, i n  sp i te  of the theoret ical  understanding tha t  has been achieved, 

and although numerical solutions by means of high-speed computers offer  

no essent ia l  d i f f icu l t ies ,  the problem of  e f f i c i en t  presentation of 

resu l t s  remains a challenge. The present paper attempts t o  contribute 

some efficiency of presentation t o  predictions of radiative transport 

through an absorbing medium contained between two para l le l  w a l l s  with 

specified temperatures and known radiative character is t ics .  

The analysis 

Two para l le l  objectives are t o  be kept i n  mind. F i r s t ,  a close 

connection i s  established between the general problem of radiative 

energy transport between w a l l s  tha t  emit, transmit, and r e f l ec t  i s o -  

t ropical ly  and the problem of transport between opaque, black w a l l s .  

The l a t t e r  case has been treated by Usiskin and Sparrow [4] and numeri- 

ca l  solutions have been given f o r  different  values of the opt ical  thick- 

ness of the plane layer between the w a l l s .  It w i l l  be shown here tha t  

the resu l t s  of [4] may be applied with only minor modification t o  the 

more general case. Second, since the calculations of Usiskin and 

Sparrow are available fo r  comparison, approximations t o  the solutions 

of the governing equations are  studied. In  t h i s  way, rather simple 

expressions are  derived tha t  provide a surprising accuracy and tha t  

certainly should be useful i n  preliminary design or engineering analysis. 
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In  the next section the governing equations are  derived. The more 

o r  l e s s  conventional approach leads t o  an expression f o r  f lux  of radia- 

t ion  that w a s  given expl ic i t ly  by R.  and M. Goulard [5] .  Differences 

i n  terminology were considered necessary and the derivation of w a l l  con- 

dit ions w a s  cast  i n  a different  form, a l l  of which prompted the inclu- 

sion of this  basic material. The discussion of the general solution 

gives a proof that i t e r a t ive  methods can be used t o  solve the basic 

integral  equation and then relates the problem t o  the case of black 
5' 

w a l l s .  

and comparisons between solutions involving differing orders of accuracy. 

Three methods, yielding increasing degrees of accuracy, w i l l  evolve. 

The remaining portion of the paper deals w i t h  approximations 

The f i rs t ,  based on the use of an exponential influence function i n  

place of the exact exponential-integral function, simplifies the analysis 

so  much tha t  a l l  resu l t s  can be expressed algebraically. 

dis t r ibut ion of the temperature (or the emission) within the med ium suf- 

The detailed 

f e r s  increasing inaccuracy near the w a l l s  but fur ther  integration t o  

determine f lux  between the w a l l s  leads t o  predictions that are never i n  

error  more than a few percent. Perhaps more important i s  the f ac t  that 

the formulas are eas i ly  manipulated t o  display major effects  of varia- 

t ions i n  the various physical parameters. The second method i s  similar 

i n  approach t o  the Milne-Eddington approximation used i n  the study of 

stellar atmospheres and improves the accuracy of the predictions without 

introducing undue complexity. Finally, an i t e r a t ive  calculation of a 

par t icular ly  simple form provides estimates tha t  agree well with the 
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more accurate numerical solutions that are available. These iterative 

calculations are then used to establish the degree of confidence one 

can have in the other approximations. 

TABU OF SYMBOLS 

0/2) [ (1/2) - %(EL) 1 
Planck's function (see eq. (5)) 

integroexponential f'unction of order n; %(x) =l e t dt 
03 

-xt -n 

integral used in iterative solution (see eq. (48b)) 

specific intensity, energy per unit area, time, solid angle 

local emission coefficient, per unit mass 

source Mction (see eq. (5)) 

weighted integrals of emission function (see eqs. (27) and (32b)) 

geometric thickness of plane layer (fig. 1) 

coefficients used in exponential approximation of E;l(x) 

(see eq. (35)) 

rate of energy transport per unit area 

reflectivity 

transmissivity 

temperature, absolute 

geometric depth in absorbing layer 

see equations (27) 

absorptivity 
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n 

E: 

e 

K 

h 

E 

P 

0 

L 

emission function (see eq. (11)) 

coefficient of cubic term in approximation of emission 

function (see eq. (46)) 

see equation (29)  

emis s ivity 

angle between ray and element normal to surface (see fig. 1) 

local absorption coefficient, per unit mass 

slope of -linear approximation to emission function (see 

eq* (454) 
COS e 
optical depth in absorbing layer (dr; = p'c a X )  

local density of absorbing medium 

Stefan' s constant 

dimensionless form of emission function (see eq. (25)) 

Sub scripts 

evaluated at 5 = 0 

evaluated at r; = EL = 

Superscripts 

right -going ( 5 

left-going ( 5  decreasing) quantity 

increasing) quantity 
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GOYERNING EQUPLTIONS 

Figure 1 shows the orientation of the coordinate system t o  be 

used. The t w o  w a l l s  are s i tuated at x = 0 and x = L. Let conditions 

a t  e i ther  w a l l  be indicated by the subscript i where i = 0 o r  L. 

Then, we have temperature, T i ,  emissivity, €1, absorptivity, ai, 

ref lect ivi ty ,  ri, and transmissivity, ti, prescribed as known boundwy 

conditions where 

ai = Ei 

It i s  assumed tha t  the gas and w a l l s  have character is t ics  tha t  may be 

averaged over the en t i re  frequency range of the radiation, so  tha t  a 

gray analysis applies, and the w a l l s  emit and r e f l e c t  diffusely. - 
The basic equation of radiative t ransfer  i s  (see, e.g., [2]) 

Equation (2)  i s  preferably expressed i n  terms of the independent var i -  

able 5 (opt ical  depth) where 

dg = p K  dx 

and thus becomes 

6 
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where J (=j/pK) is called the source function. Provided the refrac- 

tive index of the medium is 1 and local thermodynamic equilibrium 

is achieved, the source function is given by 

where 

Planck' s f'unction 2hv3 e-(-hv/kT) ) 
c2 1 - exp(-hv/kT) Bv (= - - 

V frequency 

h,k, (5 Planck, Boltzmann, and Stefan constants 

C velocity of light 

The notation 

serves to distinguish the rate of flow of energy per unit area and 

solid angle f o r  positive and negative values of 

notation, the solution of equation (4) in the two regimes becomes 

p(=cos 0 ) .  With this 

where I + ( O )  and are the isotropic specific intensities induced 

by the walls at 5 = 0 and EL = JoL p'c dx, respectively. 
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The t o t a l  ra tes  of energy transport per un i t  area i n  the posit ive 

and negative x directions are 

The values of 

and l e f t  fluxes of radiation. 

q+( 5 )  and q-( 5 )  are  sometimes referred t o  as the r igh t  

Equations (7) and (8) yield the two 

relat ions 

where 

integral  defined as 

$ = s I + ( O ) ,  q;l = s1-(EL) and En(E) i s  the nth exponential 

If loca l  unidimensional energy flux (net energy transport per un i t  

time and area) i s  denoted q ( E ) ,  one has 

and 

x direction. 

t ion.  After set t ing 

q(E) > 0 obviously corresponds t o  a net energy f l o w  i n  the posit ive 

From equations ( 9 )  and (10) fo l lows  the fundamental re la -  
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one gets 

It will be noted that the expression 

integrand of (12), is discontinuous when 

in differentiation. 

sgn( 5 - k1)E2( I 5 - E l  I ) ,  in the 

This re'quires care 5 ,  = 5 .  

Equation (12) is the flux equation for our unidimensional problem. 

The notation does not agree precisely with conventional astrophysical 

terminology but the choice of variables should preclude any ambiguities. 

The value of q(5) differs by a factor 'IC from the astrophysicists' 

flux, usually denoted F. Sign conventions are also changed. The inde- 

pendent variable 5 is, of course, dimensionless since the volumetric 

absorption coefficient pK is measured in terms of the reciprocal of 

radiation mean free path length. 

The dimensionless parameter EL (optical thickness of layer) w i l l  

be seen later to play a unique role in fixing the nature of the varia- 

tion of the emission function P ( 5 ) .  It should be remarked that in some 

references the volumetric absorption coefficient is assumed a constant 

so that EL becomes pKL. The transformation to optical path length 

in equation (3) shows that this restriction is not necessary. 

recent paper, Probstein [6] has developed an analogy between 

In a 

pKL and 
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the  inverse Knudsen nuniber of low-density f l u i d  mechanics. The Knudsen 

number appears i n  molecular transport phenomena and i s  the r a t i o  of 

molecular col l is ion mean f ree  path t o  the character is t ic  f l o w  length. 

The term pKL 

t e r i s t i c  length and the mean f r e e  path of a photon. This concept i s  of 

considerable heuris t ic  value and enables Probstein t o  present, f o r  the 

case of black w a l l s ,  an approximate expression f o r  flux by means of the 

analogy. Similar approximate resu l t s  t ha t  apply to more arbi t rary w a l l  

conditions w i l l  be considered i n  the f i n a l  section of t h i s  paper. 

can similarly be expressed as the  r a t i o  between charac- 

Calculation of Input Conditions at  Walls 

The magnitudes of c and q i  are re lated t o  the w a l l  temperatures 

(or direct  w a l l  emission) as well as the w a l l  parameters introduced in  

equations (1). 

Thus, one can write the t w o  balances 

Two equal i t ies  ex is t  wHich serve t o  fix these values. 

= “oflo + roG 

These relat ions simply s t a t e  tha t  the energy per un i t  time and area 

coming from each of  the w a l l s  i s  equal t o  the  d i rec t  emission plus the 

reflected portion of the incoming radiation from external sources, tha t  

is, from the other w a l l  and the medium between the w a l l s .  

t i ve  expressions f o r  and q; are, from equations (91, 

The quantita- 
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From equations (1.3) the  desired conditions a t  the w a l l s  now follow; 

thus 

Basic Integral  Equation f o r  Constant Flux 

For constant w a l l  temperatures and loca l  thermodynamic equilibrium, 

q ( E ) ,  as given i n  equation (12), must be a constant. 

q(E), from equation (12), i s  

The derivative of 

c (1.5) 

I 



and f o r  constant flux one gets the basic in tegra l  equation 

TWO special  cases of equation (16) are of part icular  in te res t .  

F i r s t ,  f o r  opaque, black w a l l s ,  ti = 0, ri = 0, and the  w a l l  emissions, 

as given i n  equations (14), are  

s;f = oO4 , 

Usiskin and Sparrow [4] have given numerical resu l t s  corresponding t o  

these conditions. The importance of t h i s  case i s  enhanced once one 

observes i n  equations (14) tha t  

on 

s t ipulat ion concerning physical conditions at  the w a l l s .  

i s  thus used t o  determine solutions i n  terms of the  parameters 

and q;l 

boundary conditions i s  established l a t e r  i n  an auxiliary calculation. 

40’ and qi have no expl ic i t  dependence 

6 .  and tha t  the analysis can proceed formally without a precise 

Equation (16) 

< 
and the connection between these parameters and the  actual  

A second case of in te res t  a r i ses  i n  re la t ing  equation (16) t o  the 

problem of a plane, paral le l ,  semi-infinite s t e l l a r  atmosphere. T h i s  

idealization occurs when the l e f t  w a l l  a t  x = 0 i s  transparent (to = 1, 

ro = 0)  and the  r igh t  w a l l  i s  allowed t o  recede t o  an in f in i t e  distance. 

Here, the driving terms i n  the r igh t  member of equation (16) vanish, 

since The integral  equatkn  becomes homogeneous + s, = 0 and EL = 03. 
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and the physical constants t h a t  should determine the magnitude of the  

emission function P (  5 )  seemingly disappear from the problem. Actually, 

the one constant t ha t  f ixes  the radiation leve l  i n  t h i s  case i s  the con- 

s tant  value of flux. The function P ( 5 )  must be related t o  q which 

means tha t  equation (12) cannot be disregarded. Equation (12) is, i n  

f ac t ,  the  fundamental governing equation; the derivation leading t o  

equation (16), or (l7), involves the l o s s  of a physical constant, and 

it might be expected tha t  under the most general conditions a res torat ion 

of the constant would be required. 

In  astrophysics the study of a semi-infinite atmosphere under con- 

dit ions involving thermodynamic equilibrium i s  referred t o  as Milne's 

res t r ic ted  problem, and equation (17) i s  called the Milne (or Milne- 

Schwarzschild) in tegra l  equation. A more than substantial  l i t e r a t u r e  

ex is t s  on the mathematical analysis of t h i s  par t icular  idealization. 

Milne's equation i s  obviously a l imiting case ( E L  + m, < --f 0)  of equa- 

t ion  (16) and i n  t h i s  sense the highly accurate solutions i n  existence 

f o r  the Milne problem can be used as a check on extreme conditions f o r  

the present s t u d y  of radiation transport  between pa ra l l e l  walls. 

Passage t o  the l i m i t  i s  not always direct ,  however. 



G E " G  SOLUTION 

Equation (16) i s  a Fredholm in tegra l  equation of the second kind. 

It takes the c l a s s i ca l  form 

where 

= ( E )  = 40 'E2(S)  + CL; E2(E, - E )  

Much of the mathematical l i t e r a tu re  devoted t o  t h i s  type of problem i s  

b u i l t  around the use of the Schwarz inequality (see, e.g., Tricomi [ 71, 

p. 50 e t  seq.) which i n  turn leads t o  integration of the  square of the 

kernel function. Rather than r e l a t e  the analysis t o  general concepts, 

it i s  more expedient t o  derive what resu l t s  a re  needed. The knowledge 

tha t  the kernel El( I 5 - E l  I )  i s  everywhere posit ive will be used. 

Let sL be a f i n i t e  constant. W e  prove f irst  tha t  the solution 

can be calculated by repeated i te ra t ion .  

i n  the calculation of 

The f i r s t  (n -t- 1) i t e ra t ions  

/3n+1(E) where P ( 5 )  lead t o  the sequence 

P d E )  = f(0 

14 
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The relat ions 

apply f o r  f i n i t e  EL. 

of the mean value theorem f o r  integrals yields 

Then since the kernel i s  positive, repeated use 

f,, P,+,(E) Sf=( l  + M  + M 2  -I- . . . +I?) < - 
1 - M  

The sequence for posit ive terms therefore converges f o r  a l l  5. 

For a nonunique solution t o  exist, a f i n i t e ,  nonvanishing solution 

of 

would be required. Meghreblian 181 has shown tha t  t h i s  i s  impossible 

as follows. From equations (20b) and (21), the inequality 

holds. But this cannot apply f o r  a l l  5 i n  the range 0 5 E 5 EL. - 



The f in i teness  of EL i s  an important condition underlying the 

above resu l t s .  

one can show tha t  

Retaining t h i s  condition and returning t o  equation (16) 

and tha t  the function is  antisymmetric about the point 

f ac t ,  straightforward manipulation of equation (16) reveals t ha t  the 

function P ( E )  f P ( E L  - E )  - (< + q i )  satisfies the homogeneous form 

of the in tegra l  equation (eq. (21)).  mt f o r  f i n i t e  EL we have noted 

tha t  the solution must vanish throughout the  range of integration and 

E = EL/2. In  

t h i s  establishes the antisymmetry property 

When E =  EL/^, equation ( 2 3 )  i s  seen t o  hold. 

In  actual  calculation and i n  the presentation of r e su l t s  it i s  

convenient t o  introduce the function cp(t), where 

\ 

From eqpations (23) and (24) one concludes tha t  

cp (E)  i s  antisymmetric about the point 

t i on  f o r  

cp(EL/2) = 0 and tha t  

The in tegra l  equa- E = gL/2. 

c p ( 6 )  is, from equations (16) and ( 2 5 ) ,  

( 2 6 )  

The function c p ( 5 )  has no expl ic i t  dependence on 40’ and qi .  
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Calculation of Solution 

The main objective of the analysis w a s  t o  calculate the emission 

function 

i s t i c s .  

dividing by 

P ( E ) ,  knowing the w a l l  temperatures and radiative character- 

Equation (25) shows tha t  when P ( E )  i s  made dimensionless by 

q i  - s;f, the problem separates in to  two calculations: 

(a) Determination of the universal W c t i o n s  cp(E) which depend 

on the single parameter EL. 
(b) Determination of (2 + q-) and ( q i  - 2) which are  constant L 

f o r  given conditions but which depend on a l l  of the given 

parameters of the problem as well as the solution cp(E) .  

Before the numerical solutions are  presented, additional r,elations 

w i l l  be given t o  es tabl ish the interdependence between the various 

parameters. We assume here tha t  EL has been fixed and t ha t  the 

function 

into equations (14) then yields, a f t e r  se t t ing  

cp( E ) has been calculated. Substi tution from equation (25) 

Z = 1 - 4rorLE32( EL) 

A = - 1 1  [- - E3(EL)] 
2 2  

I 

the  two simultaneous equations f o r  and q i  



, ._ , . ... . .- I.. I 

If the additional notation 

i s  introduced, the determinant of the coefficients of the simultaneous 

equations i s  Z.A and the solution of equations (28) yields 

Thus 

( 3 1 4  1 - = - [ (1 - r0)cLoTL4 - (1 - rL)~ouTo41 % n 
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and at  5 = EL/2 

where 

Flux, q, and the emission function, P ( E ) ,  are f i n a l l y  expressed 

in  terms of the universal  function 

ing  flO4, 0TL4 and the  w a l l  parameters as fo l lows:  

rp(E), the boundmy conditions involv- 

- - - 2 [& (:) - El] [(l - r0)cLaTL4 - (1 - n 

where A, &, K1, and A are  given i n  equations (27) ,  (29), and (32). 

The in tegra l  equation (26) f o r  c p ( ~ )  can be rewrit ten i n  an 

al ternat ive form. From equations (12) and (32) this i s  



- E&> + + %(EL - E )  1 
2 

- -  

EL 
cp(E,,)[sgn(E, - E1)E2(lE - E l l )  + E2(El) ldS1 (34) 

= 2l 
Equation (26) can be rederived from equation (34) by taking the  deriva- 

t i v e  of the l a t t e r  with respect t o  E,.  Either equation i s  adaptable t o  

the calculation of 

.equation of the second kind and, as shown previously, the proof of the 

convergence of i t e r a t ive  methods offers  no analytic d i f f icu l ty .  Numeri- 

cally,  however, the singularity i n  the kernel a t  

venience requiring special  attention. 

t ion  of the f i r s t  kind, i s  l e s s  well adapted t o  general analysis, but 

i s  numerically more t ractable  since the kernel i s  f i n i t e  everywhere 

although it does possess a s tep discontinuity a t  

( ~ ( 6 )  by numerical means. The f irst  i s  a Fredholm 

5 = E l  i s  an incon- 

Equation (34) i s  a Fredholm equa- 

E = 6,. 

Equation (33a) shows tha t  the variation of P ( E )  depends essent ia l ly  

on the variation i n  cp(E). For theoret ical  predictions, therefore, the  

basic calculations can be carried out f o r  the case of opaque, black w a l l s  

and f o r  a given opt ical  thickness EL i n  order t o  f i x  cp(E) .  Thus, the 

graphical resu l t s  given by Usiskin and Sparrow [ k ]  or by Meghreblian [83 

can be used direct ly .  The terminology used here d i f f e r s  from these r e f -  

erences; it suffices merely t o  note, however, t ha t  

t ion  of the dimensionless emission function from i t s  value opt ical ly  mid- 

way between the  w a l l s .  Following t h i s  determination, the exact leve l  

of the function P ( E )  can be found a f t e r  an additional integration t o  

c p ( 6 )  i s  the devia- 
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determine & or K, and K1. It w i l l  be shown i n  the next section 

that good approximations of the solutions can actually be carried out 

analytically.  Graphical resu l t s  will be given then. 

AppRoxIMA!rE SOLUTIONS 

I n  this  section, approximate solutions t o  the t ransfer  equation 

are given i n  analytic form. 

mined when the kernel i s  a rb i t r a r i l y  replaced by an exponential function. 

This type of approximation i s  often used in  m r e  complex problems involv- 

ing the coupling of radiat ive and other modes of energy transport (see, 

e.g., [ g ] ) .  Situations l i k e  the present one, i n  which different orders 

of accuracy can be achieved, are  of value i n  assessing the degree of 

accuracy that can be expected. Second, the exact kernel i s  retained 

but the analysis i s  res t r ic ted  t o  the determination of a l inearized form 

of 

In general, th is  solution represents an improvement i n  accuracy over the 

f i r s t  case but at some cost i n  ease of calculation. Third, a more 

refined process, representing a modified i te ra t ion  of the exact equation, 

w i l l  be carried out. These l a t t e r  resu l t s  compare well with the pre- 

viously published numerical solutions for 0 < EL 5 10. 

Fi r s t ,  the nature of q(E) will be deter-  

q(g) together with i t s  improvement by means of a single i te ra t ion .  

A commonly used approximation f o r  Ez(5) involves i t s  replacement 

by an exponential function. More specifically,  the re la t ion  

(35) -nE E&) = me 
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i s  introduced where m and n are  chosen i n  some plausible manner. A 

plot  of the t w o  functions shows tha t  small deviations can be maintained 

throughout the full range of 5, even though loca l  discrepancies i n  the 

derivatives of the functions become excessive. This approximation was 

implicit i n  t he  ear ly  work of Eddington [lo] on stellar atmospheres, 

the rationalization stemming f rom an averaging over the angular variable 

0 (or 

equations. Different values of m and n are found i n  the l i t e r a tu re  

since compromises must be made when mean values of specific intensity,  

flux, and radiation pressure are  required. 

of v i e w  of the astrophysicist i s  given by Ambartsumian ([ll], p. 1.7 e t  

seq.). More recently, Vincenti and Baldwin [12] have proposed 

n = 1.562 which f o l l o w  a f t e r  the requirement is  imposed tha t  flux be 

given properly i n  the Rosseland l imit  of strong absorption and tha t  equa- 

t ion  (35) correspond t o  a l eas t  squares f i t  between the  two  functions. 

The first of these conditions i s  well founded physically and i s  common 

to a l l  approximations. 

Proposed values of 

3/2 5 n <, f i ;  the value 3/2,  preferred by most authors, is the one 

associated with Eddington's approximation. 

v )  of the integrals appearing i n  the derivation of the transport 

A discussion from the point 

m = n2/3, 

The second condition i s  obviously more arbitrary.  

n i n  the l i t e r a tu re  f a l l  usually i n  the range 

If the flux equation i s  written as 

EL 
= -[E3(5) + E 3 ( 5 ~  - 0 1  + 2 Cp(E1)sgdE - Sl)E2(15 - E l l ) d - E l  

(36) 
c$ - <. 
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the  exponential approximation can be introduced i n  the integrand from 

equation (35). The resul t ing integral  equation can be solved explic- 

i t l y  but the degree of approximation i s  affected only s l igh t ly  and the 

analysis i s  made much simpler if the fur ther  approximation 

i s  introduced. The in tegra l  equation then becomes 

For constant flux, the  solution i s  

and consistent with the approximation used, one has 

For a l l  values of the parameters the emission function 

a l inear  f’unction of 6 .  From equations (3la) and (32b) 

@ ( E )  i s  therefore 

-9 = 4n 
( 4 0 4  
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A t  extreme values of EL, f lux  is  given by 

-q &[ ; ' EL << I- 
(41) 

q;, - zb+ Y EL >' 1 351, 
When n = 3 /2  and when the walls are  opaque and black, equation (koa) 

i s  the interpolation formula f o r  f lux  derived by Probstein by completely 

different  methods. 

more accurate resu l t s  indicated good agreement. Further comparisons, 

including different emissivities and r e f l ec t iv i t i e s ,  w i l l  be given i n  

figure 2. 

Probstein's graphical comparison of h i s  formula and 

Equations (41) give in tu i t ive ly  obvious r e su l t s  : f o r  opt ical ly  

th in  media (EL << 1) flux i s  merely the difference between the t o t a l  

emissions from the two w a l l s ;  f o r  opt ical ly  thick media, where the mean 

free path of the radiation i s  small, the f lux  is  i n  agreement with the 

predictions of Rosseland's approximation. 

the radiation transport equation t o  the heat conduction equation with 

an effective,  nonlinear conductivity. 

index of refraction, f lux i s  given by 

The Rosseland theory reduces 

For a gray material with u n i t  

4 dP q x  - - -  
3 de 

Equation (42) holds only f o r  

applicable only t o  the case of opaque, black w a l l s .  

t ion  (42) f o r  constant 

t ions (41).  

EL >> 1 and boundary conditions are s t r i c t l y  

Integration of equa- 

q then leads d i rec t ly  t o  the second of equa- 



An improved approximation can be achieved through a study of equa- 

cp(E) i s  known t o  be asymmetric about t ion  (26) direct ly .  

E =  EL/^. 
c p ( 6 )  = A[E - (EL/2)] and seek 

into equation (26), or into the derivative of t h i s  re la t ion,  which has 

the form 

The function 

To a f i r s t  order, therefore, it i s  proper t o  se t  

A. Direct substi tution may then be made 

The calculation gives, a t  E = EL/2, 

The lineax approximation f o r  cp yields  cp(0) = -AEL/2. This l a t t e r  

expression, together with equation (44), gives the following predictions 



Equation (45a) i s  i n  agreement with the determination of slope given by 

Meghreblian [8] f o r  black w a l l s  but equation (45d) does not conform t o  

h is  resu l t .  The l inear  approximation of q ( E )  does not yield constant 

f lux  and a decision must be made concerning i t s  evaluation. The f lux  

a t  EL/2, as given i n  equation (45d), gives much be t t e r  accuracy than 

f lux  evaluated at  the wall. 

Equations (4%) and (45d) represent improvements over the s implif i -  

cations inherent i n  equations (39) and (40). 

equation (4%) is ,  of course, limited since the predicted emission i s  

The degree of  accuracy of 

expressed as a l inear  function of E throughout i t s  range. By vir tue 

of the additional integration t o  get f lux,  however, equation (45d) should 

provide good estimates. 

t ion  (45d) reduces t o  the predictions of equations (41), as indeed it 

should from physical considerations. 

One notes tha t  f o r  extremes i n  EL, equa- 

An improved expression f o r  c p ( E )  now follows by i te ra t ion  when 

equation (4%) i s  used t o  evaluate the in tegra l  i n  equation (26). This 

process i s  lrmch t o  be preferred, analytically,  t o  the more general 
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i t e r a t ive  scheme employed i n  equation (19) since the f i r s t  estimate i s  

closer t o  the exact solution. The process i s ,  i n  fac t ,  similar t o  the 

i t e r a t ive  use of the Milne-Eddington approximation ( [2], p. 87) t o  

achieve a solution of the Milne equation. 

Continued i te ra t ion  beyond t h i s  stage i s  more d i f f i cu l t .  A simpler 

process i s  available, however, i n  which integration of products of the 

transcendental functions i s  avoided while the accuracy i s  increased. 

To this end, i n  view of the known antisymmetry about 

a cubic term t o  the l inear  expression for 

E = 51;/2, we add 

cp(E). Thus, we put 

where the slope A a t  E = EL/2 i s  given by (45a). A f i r s t  approxima- 

t ion  i s  found by inserting the l inear  form (4%) i n  the integral  equa- 

t i on  (26) t o  f ind  

A value f o r  y 

evaluated a t  E = 0; 

i s  determined by equating expressions (46) and (47), 
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Now put 

i n  the in tegra l  equation (26) and find 

where 

This process can be repeated by se t t ing  up the scheme 
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. . . . . . . . . . . . . . . . . . . .  } (49) 

and increasing n u n t i l  successive r e su l t s  agree t o  the  desired number 

of figures . 
When a solution for 

accuracy, the quantit ies 

ing t o  t h e i r  definit ions i n  equations (27) and (32). 

it w a s  thought t o  be suf f ic ien t ly  accurate t o  use the cubic expression 

cp(e) has been obtained having the required 

q/(c$ - G), KO, K1 can be calculated accord- 

For t h i s  purpose, 

and evaluate the integrals  analytically,  ra ther  than t o  perform a numeri- 

c a l  integration using c ~ ( " ) (  E ) .  The results are, using superscripts t o  

indicate correspondence with the i t e r a t e s  sk,own i n  equations (49) : 
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Once K, or K1 i s  known, the f lux  follows from (32a) or (32b). 

Finally, numerical values f o r  the quantity (qi - $) can be found by 

using the expression (50a) f o r  f o r  the calculation of A accord- 

ing t o  (2'9) and then using equation (3la).  

€!RESmATION AND DISCUSSION OF RESULTS 

In  t h i s  section the analytic solutions previously derived w i l l  be 

shown graphically and some formulas of special  i n t e re s t  will be given. 

Attention i s  directed f irst  t o  flux since reasonable accuracy i s  not 

d i f f i c u l t  t o  achieve. 
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The r a t i o  q / ( $ ,  - <) does not distinguish between black-wall 

emission and the w r e  general case. Hence, the t w o  formulas, equa- 

t ions (@a) and (45d), can be compared direct ly  with the numerical 

solution f o r  black w a l l s  i n  [4] and [8] and also with a recent exact 

calculation of Hottel [l3]. Figure 2 shows our predictions. 

curve gives resu l t s  f r o m  the i te ra t ive  use of the cubic approximation 

t o  c p ( E )  as outlined following equation (46). Through the range 

0 <_ EL 5 2 there i s  excellent agreement with published resu l t s  and the 

so l id  curve appears t o  be a valid cr i ter ion t o  judge the merit of our 

other approximations. Unfortunately, discernible differences from the 

references can be detected in  the range 3 5 EL <_ 10 but comparable d i f -  

ferences also ex is t  between the references themselves. Since there i s  

complete agreement a t  EL = 2 and l i t t l e  doubt as t o  the approximation 

a t  

possibly at t r ibutable  t o  the draftmanship of the published curves. 

The pract ical  consequences are s l ight ,  however, and the present resu l t s  

appear valid t o  about two d ig i t  accuracy. The short-dash curve i s  

equation (Ua) (for 

by Probstein [6].  

which affords a be t t e r  f i t  on the lower end of the 

sacr i f ice  of algebraic simplicity. 

polation f o m l a s  yield about the same accuracy but d i f f e r  i n  the sign 

of the error.  For EL >> 1 a l l  resu l t s  coalesce. 

The sol id  

EL = 10, the s l igh t  deviations i n  the intermediate values are 

n = 3 / 2 )  and i s  the interpolation formula proposed 

Equation (45d) supplies another interpolation formula 

EL scale but a t  a 

2 <_ EL 5 6 the in t e r -  In  the range 



The next objective is  t o  r e l a t e  the magnitude of q;( - 2 t o  the 

w a l l  boundary conditions f o r  the general case of nonblack w a l l s .  

t ions  (Ub) and (45e) supply t h i s  information f o r  the two l inear  forms 

of the  emission function. Considerable simplification i s  achieved, 

Equa- 

however, if the  w a l l s  are  opaque o r  if  they are  a l ike i n  material prop- 

e r t ies .  F i r s t ,  we s h a l l  r e s t r i c t  a t tent ion t o  opaque w a l l s  where 

1 - ro = co, 1 - rL = cL. From equations ( 2 9 ) ,  (3la), and (32) one gets 

Substitution into the denominator of the r igh t  meniber, f rom equa- 

t ions (@a) or (45d), provides the desired expression. 

equation (40a) with 

For exanple, 

n = 3/2 yields 

For large and small EL equation (52) reduces t o  more familiar 

relat ions.  

Figures 3 show, f o r  opaque w a l l s ,  the function q/(flL4 - eo4) 
The so l id  curves are pre- as given by the different  approximations. 

sumably exact t o  the accuracy with which they can be read. 

dash curves are, i n  effect ,  generalizations of Probstein's interpolation 

f o m l a  and, from equations (40.) and ( 5 2 ) ,  are given by the relat ion 

The short- 

I l l  



The remaining curves (long dash) resu l t  f r o m  use of expression (45d) 

i n  equation (51). 

ferences f romthe so l id  curve can be estimated f r o m  the resu l t s  shown, 

and the f ac t  t ha t  the three approximations are indistinguishable f o r  

the lowest curve on each graph. 

The dashed curves are not shown i n  a l l  cases; dif - 

The re la t ive  m e r i t s  of the simplest approximation, tha t  i s ,  the one 

associated with the exponential kernel, appearpow t o  have been f u l l y  

established insofar as predictions of flux are concerned. We therefore 

write, f ina l ly ,  the m o s t  general formula based upon t h i s  approach: 

Equation (54) embraces and extends the previous interpolation formulas. 

The actual dis t r ibut ion of emission, or of cp(k), provides the m o s t  

exacting demands upon the approximations underlying the predictions. In  

figure 4 the curves were calculated by t w o  methods. 

again correspond t o  repeated i te ra t ion  of the cubic expression; the 

other curves are given by equation (47), the f i r s t  i te ra t ion  of the 

l inear  relation. No attempt was  made t o  include the l inear  dis t r ibu-  

t ions of To the scale of these 

figures both l inear  distributions conform t o  the s t ra ight  l ines  tangent 

t o  cp(k) at 5 = sL/2. The standard of comparison comes from the numer- 

. . i c a l  resu l t s  plotted i n  [4] and [81. It does not seem possible, because 

The sol id  l ines  

c p ( s )  predicted by the simpler methods. 

of inconsistencies i n  the published figures, t o  d r a w  unequivocal con- 

clusions about the accuracy. Qualitatively, the resu l t s  may certainly 
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be termed sat isfactory but small loca l  deviations exist i n  each case. 

These discrepancies are at  most of the order of 1 or 2 percent. 

Diminishing preciseness inevitably occurs i n  the vicini ty  of the w a l l s .  

I n  f igure 5 the dependence of the functions Q, K1, and A on EL 

i s  shown according t o  the best  approximations of t h i s  paper. 

values are of use i n  fur ther  specific calculations of 

determination of the level  of the emission function. 

These 

cp( E )  and i n  the 

In the i n i t i a l  par t  of t h i s  paper the analysfs i s  cast i n  a general 

form and the problem of radiative transport between w a l l s  with ra ther  

arbi t rary characterist ics i s  re la ted t o  the calculations involving black 

w a l l s .  I n  the lat ter par t  of the paper the philosophy i s  more one of 

pragmatism; namely, tha t  t o  the accuracy of the physical idealization 

and t o  the accuracy of many engineering estimates, it i s  preferable t o  

re ta in  some analytic control over the resu l t s .  In particular,  the  use 

of the simplifying assumptions leading t o  the  use of the exponential 

kernel yields simple formulas of pract ical  in te res t .  Analytic methods 

are  shown a lso  t o  produce solutions of reasonable accuracy. The mathe- 

matical nature of the problem of radiative transport i s  of considerable 

in te res t  t o  theoris ts ,  and, i n  the ultimate degree of perfection, numer- 

i c a l  calculations appear t o  be required. 

f ixing a standard of excellence and need t o  be understood i f  r e s t r i c -  

t ions are t o  be relaxed and estimates of the effects  of frequency- 

dependent absorptivity and emissivity are  t o  be studied. 

hand, a good grasp of the quali tative character of the solution i s  

Such methods are essent ia l  i n  

On the other 
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important i n  the extension t o  l e s s  idealized cases and algebraic 

formulas may be preferable t o  purely numerical resu l t s  i n  f i l l i n g  t h i s  

need. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., Sept. 3, 1963 
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Figure 1.- Sketch showing pa ra l l e l  walls separated by absorbing medium. 
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- Iterative Solution 
----- Equation (40a) 
--Equation (45d)  

3 

Figure 2.- Dimensionless flux, as calculated by three methods of 
approximation, showing dependence on optical thickness. 



r r - Iterative Solution 
---- Equation (53) 
-- Equations (45d ,  51) 

5 6 7 8 9  
EL 

Figure 3.- Dimensionless f l u x  between opaque walls, showing dependence 
on optical thickness and wall emissivities. 
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Figure 4 .  - Approximations of universal function (p( S/EL) fo r  different  
opt ical  thicknesses. 

40 



.2: 

.2( 

z .I, 

- K O A  

.IC 

.0: 

C 

. 

\ 

9 .03 

-K, 

.02 

:o I 

IO0 

\ 
/ 

/ 

\ 

NASA-Langley, 1964 A-824 41 



“The aeronautical and space activities of the United States shall be 
conducted so as t o  contribziie . . . to  the expamion of hvman h o w l -  
edge of phenomena in the atmosphere and space. The Adininistration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS A N D  SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


